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Abstract

The large interest in autonomous vehicles is a signi�cant
driver for computer vision research. Current deep learn-
ing approaches are capable of impressive feats, like dense
full frame depth prediction from a single image. While im-
pressive results have been achieved, it is not yet clear if
they are good enough for autonomous driving. The prob-
lem is that existing evaluation benchmarks and metrics are
not suf�cient to answer this question. This work makes a
step towards answering this question. Current evaluation
methods are incapable of proving or refuting suitability for
potentially hazardous real world situations. This is due to
a) the large gaps in the currently used Lidar ground truth
data, which cannot test many dif�cult and relevant cases and
b) the global summary metrics used, which are intangible
with respect to rigorous performance guarantees. In this
work we provide a new benchmark based on commercially
available dense light-�eld depth data, which closes these
gaps in the evaluation. We implement domain speci�c and
interpretable error metrics, which allow for strict assertions
over the performance of tested methods. We will make the
leader-board for dense depth prediction publicly available,
however the approach is also transferable to other depth es-
timation tasks. Such stringent evaluations are indispensable
in testing and demonstrating the performance for potentially
hazardous applications like autonomous driving, a critical
aspect also for the assessment of autonomous systems by
regulatory bodies and the acceptance in the public.

1. Introduction

In recent years, computer vision has made tremendous
progress in solving the challenging computer vision tasks,
which will eventually make autonomous driving a reality.
This progress has been fueled by the ability to train large
neural networks, as well as the availability of large data sets.
In this respect, the signi�cance of publicly available bench-
marks should not be underrated. They foster objective and
reproducible research, bene�ting the research community, as
well as the industry seeking to implement the results. This

Figure 1: Example from our new benchmark, from top to
bottom: Input image, light-�eld depth, prediction [24], crit-
ical failures (compare Section9). Closest failure location
marked with a cross, with method distance and height (GT
in brackets). These represent critical failures cases for au-
tonomous vehicles, which dangerously in�uence driving be-
havior due to inference with the drivable corridor, up to2 m
above the street. These critical failures cannot be detected
using Lidar, because re�ective areas (puddle) and large im-
age heights and/or distances (sky/truck) are missing from
Lidar data. Our metrics speci�cally detect the criticality of
these failures, while global metric like MSE or BadPix fail
to determine the in�uence of errors on autonomous vehicles.

work contributes such a benchmark, see Fig.1 for an exam-
ple from our evaluation. While for semantic computer vision
tasks there is an abundance of both training data and publicly
available benchmarks [20] , for depth based computer vision
tasks the situation is a bit less promising. To sensibly evalu-
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ate deep learning based methods in the autonomous driving
scenario, a wide and realistic variety of street level scenes is
required. Yet, apart from the well-known KITTI data set [11],
all benchmarks are either based on completely synthetic data
[8, 32], or limited to a small set of scenes [36, 34], from a
domain markedly different from the automotive scenario.

We believe that the main reason for this scarcity of data
is the high complexity in acquiring and processing the 3D
ground truth required for such data sets. Until recently only
Lidar (Light detection and ranging) based acquisition meth-
ods were capable of producing the depth information. How-
ever, Lidar acquisition has a completely different perfor-
mance envelope compared to image based depth estimation.
The best commercially available Lidar sensors are capable
of recording a mere 128 points simultaneously (e.g. Ouster
OS1-128 [28], Velodyne Alpha Prime [39]), and hence have
to fall back to scanning a scene by moving or redirecting the
Lidar beam. This means acquiring the 3D information for
the dynamic scenarios encountered in autonomous driving
scenarios is quite challenging as the scene changes during ac-
quisition and therefore there will be mismatches between the
image data and the recorded Lidar point clouds. These tech-
nical obstacles explain why of the 37 automotive data-sets
listed by Kanget al. [20], 10 provide Lidar data but only two
were processed to correctly account for dynamic object mo-
tions, speci�cally KITTI [11] and the HCI data set [21]. But
even on the static parts of a scene, the Lidar measurements
have many gaps, including very re�ective or dark objects,
where no valid depth measurements are available. As the
most depth prediction methods have the potential to work
in these situations, the sparse Lidar data is neither suf�cient
to assess the full potential of image based depth estimation,
nor to detect all possible limitations of the predictions. This
makes the task of testing and verifying autonomous systems
very dif�cult.

In this work we introduce a benchmark based on pas-
sive light-�eld based dense depth ground truth which has
recently become commercially available [30]. The depth
data is based on a commercial 17-camera light-�eld setup.
Setup and per-pixel depth data were supplied by rabbitAI1.
Using this dense depth data for benchmarking we are able to
implement a range of improvements over the current Lidar
based benchmarking approaches.

In the following we summarize our main contributions:

� A new benchmark with public leader-board (rab-
bitai.de/benchmark), which closes many gaps left by
previous approaches.

� Evaluation metrics speci�c to the domain of au-
tonomous driving which enable stricter assertions with
respect to the performance of tested methods.

1rabbitai.de

� A detailed comparison between the previously used
Lidar data and the new passive light-�eld depth.

This benchmark is a step towards strict and interpretable
benchmarking for autonomous driving scenarios, and the
introduced methodology represents a way of testing and
promoting this robustness, for example for regulatory bodies.

2. Related Work

In the following we will introduce previous benchmarks
and their data acquisition approaches. Note that we only re-
port benchmarks using real world captures. Image synthesis
is in principle able to generate suf�ciently realistic imagery,
but the modeling of the world to a suf�ciently high degree is
extremely expensive. Indeed, for realistic content generation
many feature �lms and games rely on 3D scanning methods
[27].

In the past, depth ground truth has been acquired with a
range of methods, including manual labeling of planes [33]
and structured light scanning [34]. Fluorescent UV paint has
successfully been utilized for optical �ow data sets [5], a
method also applicable for depth ground truth. However, all
these methods are constrained to static close-range captures
and hence cannot provide the range and speed required for
dynamic automotive scenarios.

Hence, all current automotive data sets and benchmarks
make use of Lidar measurements to acquire depth informa-
tion. Lidar sensors (short forLight detection and ranging)
actively scan the scene to determine distances. Compare
[20] for an overview of many driving data-sets, with and
without depth.

Two categories of Lidar data-sets can be distinguished.
Static scene scanning, where a possibly quite slow survey
grade Lidar sensor scans a large area, which is then rigidly
registered. For this class, dynamic objects need to be handled
completely separately, for example by manual �tting of CAD
models [26] or using manual annotation of cardboard-style
motion [21]. The common problem with these approaches is
the extremely labor-intense processing and the limitation to
very few classes of dynamic objects, hence some data-sets
only include the static background and completely ignore
dynamic objects for depth estimation, like the Apollo data
set [17]

Most automotive data-sets that provide depth measure-
ments are based on fast automotive Lidar sensors which have
a relatively high scanning rate (10-20Hz) which reduces the
skew between camera images and the Lidar measurements.
However, the sequential nature of Lidar sensors still intro-
duces signi�cant skew between camera images and Lidar
measurements, which has to be accounted for. To the best
of our knowledge only two data-sets are available which
perform this post-processing. One is the well-known KITTI
data-set and benchmark [11], which also incorporates static
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scene scanning. The second is a recent stereo data set by
Yanget al. [40], which implements an automatic �ltering
procedure based on stereo matching – with all the biases that
might be introduced. All other data-sets simply provide raw
Lidar scans with full motion artifacts [29, 6, 25, 37, 2, 31].

None of the data-sets address the large gaps which are
inevitable due to the measurement principle of Lidar sensors,
compare Section6.

3. Design Goals

In the following we will outline the design goals which
governed all decisions for our new benchmark.

Coverage Systematic gaps in the data limit the validity of
any conclusions derived from an evaluation, and should be
avoided at all costs. Many gaps previously encountered in
Lidar based data sets are closed in our new benchmark, see
Section6 for details.

Interpretability Evaluation metrics have limited utility
without a way to infer tangible conclusions from them.
Global metrics like MSE or SILog [10] do not allow as-
sertions about the suitability of methods for autonomous
driving. Metric such aspercentage of obstacles missed at
distance x, as implemented in our benchmark, allow much
stricter performance assessments.

Comparability When comparing methods across several
benchmarks it is oftentimes dif�cult to reach de�nitive con-
clusions about the relative performance, as many bench-
marks provide totally different imaging characteristics, with
their own sets of training data. This makes it dif�cult to at-
tribute performance differences across benchmarks. Hence,
instead of directly using the raw image data, we imitate an
established data set, speci�cally the KITTI imaging pipeline.
This has the added bene�t of bootstrapping our benchmark
with the depth estimation approaches as trained by the re-
spective authors for the original KITTI benchmark.

Updates Over time, a benchmark becomes increasingly
outdated. An example for this is the rise of E-Scooters in re-
cent years, which represent a novel hazard that is not present
in data obtained before ca. 2018. To enable updates to our
benchmark we use the concept ofcontainer submissions,
where submissions are containerized implementations in-
stead of results. We still allow for regular submissions of
results, however those are discouraged.

Incentivize Good Submissions An ideal submission
matches the following requirements:

� Is a method notably distinct from other submissions.

� Is published in a peer-reviewed conference/journal.

� Has a published implementation.

� Has containerized algorithm for testing.

The �rst two aspects are hard requirements, which will only
be lifted temporally,e.g. to enable a submission to a peer re-
viewed venue, the remaining two aspects will be encouraged
via our submission policy.

Data Variety Classically, one would choose a car to cap-
ture images from an automotive perspective. However, cars
need to follow the rules and �ow of traf�c, and it is dif�-
cult, both for safety and legal reasons, to actively direct a
car towards the scenes which are most interesting for an
autonomous driving benchmark. To increase the variability
in captured scenes and the density of dif�cult and potentially
hazardous scenes for autonomous vehicles we instead opted
for mounting the capture setup on a cargo bike, which gives
this benchmark a unique perspective of driving situations.

4. Setup

The setup used for this benchmark is a 17 camera light-
�eld setup using Sony IMX253 CMOS sensors and 8mm
lenses for a HVOF of around 90� . The resolution of the
cameras is 12MP (4096x3000). The setup was mounted on
a modi�ed cargo bike, together with additional sensors not
relevant for this benchmark, like GNSS receivers. Calibra-
tion, recording and depth processing for this benchmark was
supplied by rabbitAI [30].

5. Recordings

For the benchmark 9 hours of footage were captured over
a period of �ve weeks in the city of Heidelberg in Germany.
From this footage 100 scenes were selected for the actual
benchmark, and a further 100 scenes will be released for
testing and �ne-tuning of submissions.

6. Ground Truth Depth

The ground truth depth data is provided and processed
by rabbitAI [30] using the multi camera setup described in
Section4. The processing includes manual quality control
and annotation to provide pixel accurate depth data. In the
following we will give a detailed analysis of the different per-
formance characteristics of Lidar depth in comparison with
light-�eld depth used in this benchmark. Note that we com-
pare single shot light-�eld data to automotive Lidar. Both
approaches can be used in a global setting where multiple
captures are registered with respect to each other. However,
this is even more problematic for dynamic scenes, for the
reasons described earlier.

The measurement characteristics between Lidar and pas-
sive light-�eld depth are fundamentally different, see Table1



light-�eld depth automotive Lidar
density high mixed

(0.022� H/V) (0.08� H x 0.42� V)
accuracy depth dependent high
coverage full limited
range unlimited 40-120m [19]

(see Section6.2)
camera sync by design skewed
viewpoint identical to img occlusion artifacts

Table 1: Overview over the characteristics of Lidar and light-
�eld capture for the evaluation of depth prediction.

for an overview. The most relevant aspects in the context of
this benchmark are range, accuracy and completeness of the
captured data. Lidar data has a very constant absolute accu-
racy, while light-�eld data is highly depth-dependent. On the
other hand Lidar, being an active measurement method, has
many issues regarding missing returns and the sequential na-
ture of the acquisition, which lead to gaps and mismatches in
the measurements. In the following, these three key aspects
are analyzed in detail.

6.1. Depth Accuracy versus Depth Range

The accuracy of the Lidar measurements is mostly inde-
pendent of the distance, although some bias with respect
to the surface normal might be present in current data-sets
[23]. Exact �gures on the absolute accuracy are dif�cult to
�nd, but the standard deviation for different re�ectivities has
been measured for several re�ectivities as0:13 m [19] for
the Velodyne Lidar used by KITTI. Most parameters of the
measured objects, like re�ectivity lead to complete loss of
data points, but seldom to large errors. On the other hand
the light-�eld ground truth used in this benchmark is for the
most part a passive triangulation based approach which leads
to a constant accuracy in disparity space, which induces a
strong dependency on the measured distance. For Fig.2
we assumed a root-mean-square error of 1.5 pixel, which is
surpassed by all the state-of-the-art methods on the HCI 4D
light-�eld benchmark [14, 18], including classic approaches
not based on deep learning [35]. Note that both Lidar and
light-�eld accuracy should be regarded with a grain of salt,
as the Lidar error does merely represent a consistency mea-
sure, not an absolute depth error which could be signi�cantly
larger [23], while the light-�eld RMSE is an absolute error
measure over a set of benchmarks scenes, but evaluated on
synthetic data. However, the exact value for the accuracies
does not change the relevant take home message, compare
Fig. 2: Lidar does overtake the accuracy of the light �eld
depth (37:8 m for the HDL64E used in KITTI), but also
starts to drop data points from as early as50 m [23, 12]
(street) until it reaches the maximum range (120 mfor cars
and foliage in the Lidar used in KITTI [12]). This means, the
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Figure 2: Plot comparing accuracy and completeness of
Lidar to the light-�eld depth, lower is better. While Lidar
provides better absolute accuracy from the intersection at
37:8 m, the light-�eld depth is still usable at much greater
distances. For example at 300 meters the light-�eld depth
is accurate to 15 meters, meaning we can be quite certain
that objects are at least 285 meters away. At the same time
the maximum range of Lidar depends on the re�ectivity, and
starts to drop some samples at50 m (street) until behind
the max range of120 meven cars and foliage are dropped
[19, 12].

range where Lidar is more accurateanddoes not yet drop
relevant samples is only between37:8 m and50 m.

We argue that for most automotive applications a �xed
accuracy in the disparity space is acceptable, because any
autonomous driving agent does operate from an egocentric
perspective, where any measurement does necessarily entail
an uncertainty which increases with the distance from the
observer. It is only important that any ground truth data used
for evaluations is signi�cantly better2 than the method in
question. As it is highly unlikely monocular depth prediction
can achieve the accuracy available to state-of-the-art light-
�eld depth estimation, this requirement can be considered
ful�lled for the ground truth data available in the benchmark.

6.2. Depth Range

The range of Lidar measurements depends on the mate-
rial properties, speci�cally on the re�ectivity of the surface
re�ecting the emitted light back to the sensor. Manufacturer
often state max ranges above100 mto 200 m[28, 39], how-
ever actual measurements give lower ranges,e.g. 50 m to
120 mfor re�ectivities between 10% and 80% for the Lidar
used in KITTI [12]. In comparison, triangulation based pas-
sive depth estimation has a fundamentally unlimited range,
in the sense that it can still give probable minimum distances
for points at in�nity, however the accuracy deteriorates as
depth increases, compare Fig.2. In contrast, Lidar drops
distant points completely, which means wrong estimates of
close objects (e.g. hallucinated obstacles)cannotbe detected
from Lidar data, because there are just no valid measure-
ments for these areas. This is highly problematic, because
without supervision methods actually lean towards halluci-

2recommended: one order of magnitude [22]



nating close objects in those missing areas. This effect is
clearly visible for the top scoring methods in the KITTI depth
prediction benchmark. In the context of autonomous driv-
ing, close objects are potential obstacles (e.g. tree branches,
signs), which means a car actually employing such methods
might falsely initiate an emergency braking or even start an
evasion maneuver which could be hazardous.

6.3. Completeness

A big advantage of the light-�eld depth used in this bench-
mark is the completeness of the measurements. While for
light-�eld measurements the accuracy varies with the ap-
pearance of the object, in the context of monocular depth
prediction, Lidar often drops samples due to:

� “large” distances,e.g. 50 mat 10% re�ectivity, [12]
� strong motion, as most Lidar points are not captured at

the same time as the image due to Lidar scanning,
� occlusions due to the change in perspective between

Lidar and camera,
� low re�ectance [19],
� very specular re�ections (car paint, windows, puddles),
� the sparseness of the Lidar measurement and
� the limited vertical �eld of view.

Figure5 shows several examples of these effects from our
benchmark and from the KITTI data-set.

7. A Note on Depth Ambiguity

One open question for both Lidar and light-�eld depth
are areas which areactuallyambiguous (compared to only
appearing ambiguous), like transparent or refractive areas.
In these cases the question is which of the multiple possible
depth values for a pixel (e.g. foreground or refracted object)
should de�ne the depth of a pixel value. As this benchmark
is focused on autonomous driving, we always choose the
closest point. This means the �rst object which would in-
teract with a virtual camera ray bundle de�nes the correct
depth value as long as it is at all visible.

8. Data Processing Pipeline

As stated in Section3, to make our benchmark easily com-
parable we do not use the raw image data for benchmarking
but instead imitate the KITTI imaging pipeline.

8.1. Image Processing

Figure 3 is an example from our image processing
pipeline, in comparison with a similar scene from KITTI.
Starting with the demosaiced recti�ed center view of the
light-�eld setup, the following steps are performed: Expo-
sure simulation, image distortion, downsampling, blur, re-
mosaicing, demosaicing with simulated KITTI demosaicing
�lter, undistortion/recti�cation, crop to �nal resolution.

Figure 3: Example processing from our imaging pipeline.
From left to right: 1. Clean intermediate image already
scaled, exposed, and distorted, 2. output of the pipeline, 3.
example patch from KITTI. Note the characteristic color
artifacts.

8.2. Depth Data processing

The depth data is initially aligned with the recti�ed center
view of the light-�eld setup. To align the GT depth with the
simulated KITTI images we follow the mappings performed
for the image itself, but skip all color based operations, in-
cluding mosaicing. Also, instead of actually warping the
depth, only the image location is warped, resulting in a dense
mapping between GT and simulated image. Performing this
mapping from the 12MP GT depth to the benchmark depth
is then mostly a down-sampling operation. Classical interpo-
lation is problematic on depth maps, because interpolation
between distinct objects can lead to depth values which be-
long to neither foreground nor background. Instead, for
every output depth sample we collect all input depth samples
which are closer to the desired output point than any other
output sample. Then we take the 25% quantile of the depth
of these points, to bias towards foreground objects.

9. Evaluation Metrics

As stated in Section3, the benchmark should be both
interpretable and comparable. For this reason we implement
well-known global performance metrics used in other bench-
marks, including: SILog, sqErrorRel, absErrorRel, iRMSE,
scaled by 100 as implemented by KITTI and described by
Eigenet al. [10]. However, such global metrics only allow
for global rankings of methods, they cannot be used to de-
duce a readiness of the tested method for any speci�c task.
For this reason we implement metrics that examine very
speci�c autonomous driving related tasks, which allow for
tangible conclusions about the suitability of methods for the
tested task. Task speci�c and geometrically deduced metrics
have been used in the past for several depth estimation tasks,
from stereo [16] over light-�eld [15, 18] to optical �ow [7].

9.1. Scale Correction

Monocular depth prediction is under-constrained, which
often leads to miss-prediction of the absolute scale [10]. We
explicitly calculate a scale correction, before performing
any evaluation, using a linear modeldcorr = �d algo + �



by estimating�; � from pixels on the street maskM via a
robust least squares estimate.

9.2. Motivation

All metrics de�ned below estimate certain failure cases
which are relevant to autonomous vehicles. While those
metrics are not comprehensive, they check for several very
severe failure cases, which can lead to dangerous behavior
of any vehicle basing decision on these erroneous depth pre-
dictions. We start with the assumption that the two most
dangerous scenarios, for decisions based on the depth pre-
diction, are failures to detect relevant obstacles, which might
cause a vehicle to ram the obstacle in question, as well as the
hallucination of obstacles, which might cause a vehicle to
initiate dangerous collision avoidance maneuvers or perform
unwarranted emergency stops. All of these actions are crit-
ical hazards which should never happen in regular driving
situations.

9.3. Interpretable Metrics

Our error metrics all calculate point sets of erroneous
world points
 s for every scenes 2 S whereS is the set
of all benchmark scenes. We then compare these points
sets with a query depthd and calculate the failure ratioE
by counting the scenes for which the erroneous point sets
contain a point closer to the speci�ed distance:

E(� ) =
1

jSj
�
X

s2S

(
1 for jf r 2 
 s j d(r ) < � gj > 0
0 else;

(1)

which assesses how many failures are encountered at or
before a distance threshold� , whered(r ) is the distance of
an erroneous pointr to the camera plane, compare Fig.4.

9.4. Street Surface Metric

For the street surface (shortbump) metric we �rst re-
project all points fromDGT andDA , that lie on the scene
speci�c street maskM , into 3D-space.

We then compute the maximum difference in z-value
within sliding windows with size of1:1 m � 1:1 m along the
street plane. The resulting error set for each scene is


 s = f r 2 M (D s
GT ) j " > 0:07 mg;

with " = j� r (D s
GT ) � � r (D s

A )j ;
(2)

whereM (�) is the set of re-projected 3D points on the street
mask and� r (�) computes the range between the 2% and
98% percentile of street elevation for each sliding window
at pointr . All windows where ranges� r (�) between GT
and algorithm deviates by more than0:07 mare counted as
erroneous.

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0

Depth [m]

fa
ilu

re
ra

tio
:

m
is

s

BTS [24]
DenseDepth [3]
SemiDepth [4]
MonoResMatch [38]

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0

Depth [m]

fa
ilu

re
ra

tio
:

fa
ke

BTS [24]
DenseDepth [3]
SemiDepth [4]
MonoResMatch [38]

Figure 4: Failure ratios from themissandfakemetric, lower
is better. Themissmetric (upper) shows failure to detect
obstacles close to the visible street surface (like parked cars,
bollards). Thefakemetric (lower) detects hallucinated ob-
stacles and displays a clear inversion in the ranking. Save
driving requireszeroerrors at close distances.

9.5. Obstacle Metrics

The obstacle metrics are designed to estimate missing and
hallucinated obstacles in the algorithm results. To robustly
estimate these – and to limit the metric to relevant obstacles
on or close to the street – we always compare two sets of ob-
stacles. A smallerrelevant obstacle setR determined under
stricter thresholds, and a potentially largertarget obstacle
setT, determined with wider thresholds. Failure sets are
then determined by removing the wider set from the relevant
set.

In the following we will de�ne the necessary primitives
to derive the obstacle metrics. All de�nitions are based
on a depth mapD, a height intervalH , as well as a street
maskM � D with an associated expanded street surfaceS,
which is derived using a thin plate spline extrapolation [9]
from the projected street surfaceM V . We de�ne projections
from the depth map:(�)V : D ! R3, (�)S : D ! R2 and
(�)I : D ! R2, which project a point from a depth map into
the 3D space, 2D position on the street surface and pixel
coordinates respectively.

We de�ne the bird-view distancebas

b(r ) = min
d2 M

jr S � dS j � min
d=2 M

jr S � dS j; (3)

which evaluates to minus the distance from the street border
if r is within M , and to the positive distance fromM other-
wise. ThenV de�nes a limited volume above the plane of
the street, including off-street areas, as:

V :=
�

r 2 R3j9s 2 S : (r z � sz ) 2 H
	

; (4)
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SemiDepth[4] 0.26 0.37 0.45 0.2 0.08 0.18 0.96 2.58 38.72 26.53 26.68 38.7
DenseDepth[3] 0.32 0.55 0.41 0.27 0.04 0.35 1.2 3.88 38.37 13.60 24.98 35.48
MonoResMatch[38] 0.47 0.29 0.82 0.25 0.43 0.55 1.03 3.25 43.41 21.98 29.31 48.64
BTS[24] 0.51 0.27 1.00 0.24 0.92 0.14 0.94 2.42 50.96 15.91 27.37 50.28

Table 2: Initial leader-board, sorted by the mean of our new metrics, evaluated at30 m(mean30). Note how BTS [24], which is
one of the top-performing methods on KITTI comes in last. This is likely due to over-�tting to the KITTI evaluation speci�cs,
while the other methods make use ofe.g. transfer-learning (DenseDepth [3]) or self/stereo-supervision (SemiDepth [4] and
monoResMatch [38]). Global metrics are much higher compared to KITTI due to the completeness of the ground truth, which
contains more dif�cult (far) depth samples. Note that this is only a snapshot, visitrabbitai.de/benchmarkfor up-to-date results.

whereH denotes the relevant height interval above the street.
This allows us to de�ne the set of obstacles with a maximum
distanceR to the street:

O := f o 2 V \ D V jb(o) � Rg: (5)

In addition we use the closest obstacles operations which
selects arelevantset of obstacles as those obstacles which
are closest to any point inV:

C(O) := f o 2 Oj9r 2 V : o = arg min
c2 O

jr � cjg (6)

Finally we de�ne an erroneous set as those points from a
setR which have no counterpart, within a limited radius of
25 px in image space, in a target setT:


( R; T ) := R n
�

r 2 Rj9t 2 T : jr I � t I j � 25
	

: (7)

Of course this de�nition only makes sense ifR; T
are from different disparity sources and without the
street pixels (DGT n M and DAlgo n M ). Different
parametrization of these sets now yield the �nal metrics:

R (source) T (target)
metric src H R src H R
miss C(GT) 0.3-2.0 5 A 0.2-2.5 6
fake C(A) 0.3-2.0 5 GT 0.2-2.5 6
missSt C(GT) 0.3-2.0 -0.5 A 0.2-2.5 0.5
fakeSt C(A) 0.3-2.0 -0.5 GT 0.2-2.5 0.5

Speci�cally misscontains obstacles found in the GT that are
missing from the algorithm results,fakedenotes obstacles
hallucinated by the algorithm,missStare missing obstacles
above the surface of the street mask (e.g. boom gate), and
fakeStare obstacle above the street surface hallucinated by
the algorithm. Note that we use different thresholds for
the target set to allow for some absolute movement by the
algorithm result. This avoids false errors where some object
just outside of the threshold (e.g. a car parked on the curb) is
just moved by a few centimeters into the threshold by the
algorithm.

10. Results

To bootstrap the leader-board we have taken four monoc-
ular depth estimation methods which have publicly available
code and pre-trained models, and containerized them: Leeet
al. [24] (BTS), Alhashim and Wonka [3] (denseDepth), Tosi
et al. [38] (monoResMatch) and Amiriet al. [4] (SemiDepth)
a Lidar based extension to Godardet al. [13]. The methods
were all pre-trained on KITTI by the respective authors, and
we report their results using the metrics introduced in Sec-
tion 9. Table2 shows the full leader-board and Fig.4 shows
plots for two of our interpretable metrics. In addition, Fig.1
and Fig.5 show a few example results. The full set of results
are available on the website (rabbitai.de/benchmark).

The most signi�cant result are the high amount of critical
errors, see Fig.4, which shows failure ratios of over 20%
at a distance of30 m, and still over 5% at5 m. For safe
autonomous navigation, these values need to approach zero.
However, there are also positive aspects. Figure5 and Fig.1
show visualizations of the algorithm results and the loca-
tion of critical failures in the image (4th row). We think the
failures can mostly be attributed to missing supervision due
to reliance on incomplete training data: The shown method
was trained with Lidar supervision, and delivers quite con-
vincing results in the lower half of the images, where a lot of
supervision was available at training. In the upper part the
estimates are very wrong, often hallucinating close objects
which would cause emergency braking or collision avoidance
maneuvers. The problem is less pronounced in the methods
which also use self-supervision (usually stereo) which can
provide at least weak supervision in areas where no Lidar
GT is available. The failures on the street itself, compare
Fig. 1, are also explained by limited supervision, because
the Lidar GT used for training cannot provide usable data
for highly re�ective materials, like the puddle in Fig.1 or
the car paint and shop windows (red rectangles in rowLidar
GT in Fig. 5). Note that these areas are not amenable to
self-supervision, ase.g. stereo self-supervision often hinges

https://rabbitai.de/benchmark


Figure 5: Example scenes from the benchmark and results of BTS [24] (upper half). For comparison also several scenes from
KITTI (lower half). The 4th row from the top shows critical failures detected by our metrics :fakeSt(red),fake(yellow),
miss(cyan),missSt(orange) andbump(magenta), and closest failures with wrong distance (d) and height (h) above street,
with GT in brackets. Note that all these failures are likely to cause hazardous driving decisions, like triggering unwarranted
collision avoidance maneuvers. Although much of the sky is wrong for BTS, which was trained on Lidar data, only the areas
highlighted in the 4th row represent dangerous failures which intersect the driving corridor. Note that global error metrics
like RMSE are unable to determine which areas aredangerously wrongfor autonomous vehicles, while our metrics detect
speci�cally those errors which critically affect autonomous driving (e.g. by intersecting the driving corridor from street level
until 2 m above the ground). Less critical are the �ne details missing both in KITTI and BTS, which are available in the
light-�eld GT (red rectangles in the second column). The Lidar GT of KITTI cannot detect many errors, like large parts of the
image above the horizon or re�ections and small details (red rectangles in theLidar GT row).

on color constancy assumptions.
However, if light �eld data is capable of providing reli-

able test data for these cases it may also be used for training,
hence we are eager to see future submissions to our bench-
mark and their performance improvements on our bench-
mark. We do not think the solution to the shown problems
does necessarily require new network architectures. Many
solutions to these challenges are conceivable, from better
training data (e.g. light �eld) over improved training objec-
tives and supervision to explicit handling of the problematic
areas, like free space annotation, or manual or automatic
completion of existing data sets.

11. Conclusion and Outlook

In summary, this work describes the design of a novel
monocular depth prediction benchmark for the scenario of
autonomous driving. The benchmark makes use of newly
available dense light-�eld ground truth to implement a much

more comprehensive evaluation regime. Speci�cally we
demonstrate several easily interpretable error metrics, which
demonstrate critical failures in current depth prediction meth-
ods. In addition, we provide a detailed comparison between
the classic Lidar based depth ground truth with the novel
depth data used in this benchmark. The benchmark is pub-
licly available3 and will be part of the Robust Vision Chal-
lenge, a cross benchmark computer vision challenge aiming
to test and promote robust vision methods [1].

This work is a step towards more comprehensive bench-
marking, which will improve the robustness of computer
vision methods for autonomous driving scenarios. The pre-
sented methods may also be useful in demonstrating and pro-
moting this robustness for regulatory bodies and the public.
While this work was mostly concerned with depth prediction,
the approach can be applied to other vision tasks, like depth
completion or stereo image matching.

3rabbitai.de/benchmark

https://rabbitai.de/benchmark
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